150 research outputs found

    Anisotropic Laplace-Beltrami Operators for Shape Analysis

    Get PDF
    International audienceThis paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh processing (e.g. surface regularization), focusing on the Laplacian itself, rather than on the diffusion process it induces, opens the possibility to effectively replace the omnipresent Laplace-Beltrami operator in many shape analysis methods. After providing a mathematical formulation and analysis of this new operator, we derive a practical implementation on discrete meshes. Further, we demonstrate the effectiveness of our new operator when employed in conjunction with different methods for shape segmentation and matching

    Statistical Computing on Non-Linear Spaces for Computational Anatomy

    Get PDF
    International audienceComputational anatomy is an emerging discipline that aims at analyzing and modeling the individual anatomy of organs and their biological variability across a population. However, understanding and modeling the shape of organs is made difficult by the absence of physical models for comparing different subjects, the complexity of shapes, and the high number of degrees of freedom implied. Moreover, the geometric nature of the anatomical features usually extracted raises the need for statistics on objects like curves, surfaces and deformations that do not belong to standard Euclidean spaces. We explain in this chapter how the Riemannian structure can provide a powerful framework to build generic statistical computing tools. We show that few computational tools derive for each Riemannian metric can be used in practice as the basic atoms to build more complex generic algorithms such as interpolation, filtering and anisotropic diffusion on fields of geometric features. This computational framework is illustrated with the analysis of the shape of the scoliotic spine and the modeling of the brain variability from sulcal lines where the results suggest new anatomical findings

    DeepTract: A Probabilistic Deep Learning Framework for White Matter Fiber Tractography

    Full text link
    We present DeepTract, a deep-learning framework for estimating white matter fibers orientation and streamline tractography. We adopt a data-driven approach for fiber reconstruction from diffusion weighted images (DWI), which does not assume a specific diffusion model. We use a recurrent neural network for mapping sequences of DWI values into probabilistic fiber orientation distributions. Based on these estimations, our model facilitates both deterministic and probabilistic streamline tractography. We quantitatively evaluate our method using the Tractometer tool, demonstrating competitive performance with state-of-the art classical and machine learning based tractography algorithms. We further present qualitative results of bundle-specific probabilistic tractography obtained using our method. The code is publicly available at: https://github.com/itaybenou/DeepTract.git

    Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry

    Get PDF
    International audienceWe present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of objects. Currents provides a distance between geometric structures that can be defined without specifying explicit point-to-point correspondences. We demonstrate this framework by registering simultaneously T1 images and 65 fiber bundles consistently extracted in 12 subjects and compare it against non-linear T1, tensor, and multi-modal T1+ Fractional Anisotropy (FA) registration algorithms. Results show the superiority of the Log-domain Geometric Demons over their purely iconic counterparts

    Проектирование системы хранения и внутрицеховой транспортировки печатных плат

    Get PDF
    С учетом принципов модульности, эргономичности и функциональности в проекте разработана система хранения и внутрицеховой транспортировки печатных плат, соответствующая современным стилям и направлениям промышленного дизайна.Taking into account the principles of modularity, ergonomics and functionality in the technologies of storage and in-house transportation of printed circuit boards corresponding to modern styles and directions of industrial design

    Tunneling Violates Special Relativity

    Full text link
    Experiments with evanescent modes and tunneling particles have shown that i) their signal velocity may be faster than light, ii) they are described by virtual particles, iii) they are nonlocal and act at a distance, iv) experimental tunneling data of phonons, photons, and electrons display a universal scattering time at the tunneling barrier front, and v) the properties of evanescent, i.e. tunneling modes is not compatible with the special theory of relativity

    Deterministic diffusion fiber tracking improved by quantitative anisotropy

    Get PDF
    Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T 1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics. © 2013 Yeh et al
    corecore